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Fast, e�cient error reconciliation for quantum cryptography

W. T. Buttler, S. K. Lamoreaux, J. R. Torgerson, G. H. Nickel and C. G. Peterson
University of California, Los Alamos National Laboratory, Los Alamos, New Mexico 87545

(April 1, 2002)

We describe a new error reconciliation protocol Winnow based on the exchange of parity and Ham-
ming's \syndrome" for N�bit subunits of a large data set. Winnow was developed in the context
of quantum key distribution (QKD) and o�ers signi�cant advantages and net higher e�ciency com-
pared to other widely used protocols (e.g. CASCADE). A detailed mathematical analysis of Winnow
is presented as well as a comparison to CASCADE in the context of practical implementations of
QKD; in particular, the information overhead required for secure implementation is one of the most
important criteria in the evaluation of a particular error reconciliation protocol. The increase in ef-
�ciency for Winnow is due largely to the reduction in authenticated public communication required
for its implementation compared to CASCADE.

PACS Numbers: 03.67.Dd, 03.67.Hk

I. INTRODUCTION

Quantum cryptography [1] presents special problems
in regard to error correction of noisy quantum commu-
nications. Under the constraint that the public channel
can be authenticated, and the assumption that all public
communications can be eavesdropped, classical informa-
tion on the exchanged qubits must be revealed through
a series of public discussions to test the quantum key in-
tegrity and to remove the errors. Discrepancies within
the qubits, observed as errors, must be treated as having
been introduced by a hostile eavesdropper; the eaves-
dropper is generally referred to as Eve and labeled E in
this work.
In a classical environment all errors can always be re-

moved with the condition that to remove all errors one
may have to reveal all information. However, within the
secrecy framework imposed by quantum key distribution
(QKD), revealed information reduces privacy. Because of
this great care must be taken to reveal a minimal amount
of information to remove errors from quantum key while
accounting for the leaked information to ensure key in-
tegrity after errors are removed.
Within this context of QKD, the two parties that ex-

change qubits over a quantum channel (Alice (A) and
Bob (B) is the notation typically used within the quan-
tum cryptography community) must have a fast and ef-
�cient method to mend the quantum key; in addition,
they must also reduce E's knowledge gained during pub-
lic discussions to a vanishingly small amount. These
constraints require that any error reconciliation protocol
will also need supporting protocols to provide a complete
framework for quantum cryptographic security. That
is, a useable QKD system will comprise a quantum-key
transmitter (A) and receiver (B), and a series of proto-
cols to remove errors and account for and mitigate the
information leakage attributable to E. The series of pro-
tocols includes [2,3], but is not necessarily limited to the

following: error-reconciliation [4,5], privacy ampli�cation
[6] and signature authentication [7].
In addition to these protocols, we acknowledge a pro-

tocol generally formulated in [4] that we refer to as pri-
vacy maintenance. We also note that the predecessor
to CASCADE [5] | the best known and probably the
most widely used error reconciliation protocol | is also
generally formulated in [4]. The key di�erence between
CASCADE and its predecessor is that CASCADE ne-
glects privacy maintenance: all data are retained until
the necessary privacy ampli�cation is performed on the
error-free data. We observe that the reconciliation pro-
cess is much more e�cient if privacy maintenance is im-
plememted during reconciliation as will become obvious
in the following discussion.
Finally, this work introduces a new error reconciliation

protocol that uses a Hamming code [8,9] to remove er-
rors. We refer to this protocol as Winnow. Winnow is
characterized by the application of a parity test, a con-
ditional Hamming hash, and privacy maintenance. The
Winnow process describes freeing from the good bits the
bad bits and is accurately analogous to the contempo-
rary de�nition of winnow: to free (grain) from the cha�
by fanning or forced air [10].

II. HAMMING ERROR DETECTION AND

CORRECTION

A. Application of the Hamming Algorithm

The application of the Hamming hash function for er-
ror correction is illustrated as follows [8,9]:
First, after A and B exchange qubits on the quantum

channel, A and B then divide their random bits into
blocks of length Nh = 2m � 1. (Due to the 1:1 correla-
tion of these data, we henceforth refer to these blocks as
a single data- or bit-block.) The m�bit (m � 3) syn-

dromes Sa and Sb are then calculated, where Sa and Sb
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resepectively depend only on A's or B's bits in a partic-
ular block.
Next, B transmits his syndrome to A and errors are

only discovered if the syndrome di�erence Sd (exclusive
or of Sa with Sb) is non-zero:

Sd = Sa � Sb 6= f0gm: (1)

Finally, m bits are deleted from each bit block to elim-
inate the potential loss of privacy to E due to the (clas-
sical) communication of B's syndromes: m bits of in-
formation are revealed on each block for which Sb is re-
vealed. Speci�cally, data privacy is maintained by re-
moval of m bits from each block at the f2jg positions
where 0 � j � m� 1. These bits are independent in the
syndrome calculations as shown in Eq. 4. We refer to the
operation of discarding bits in this manner [4] as privacy
maintenance.
The Hamming algorithm always corrects any single er-

ror within any bit block. The e�ect of the Hamming
algorithm and privacy maintenance is less clear in the
event that more than one error exists in a bit block. Such
considerations are now discussed in detail.

1. Syndromes

The syndromes Sa and Sb are formed by contraction
of the Nh�bit blocks with the matrix h(m):

S =
mX
i=1

2i �mod
0
@NhX

j=1

Xjh
(m)
i;j ; 2

1
A , (2)

where Xj represents bit j in A's or B's block.
The matrix h(m) is a special form of hash function [11]

and is given by

h
(m)
i;j = mod

�
j

2i�1
; 2

�
, (3)

where 1 � i � m, 1 � j � Nh, and integer arithmetic is
assumed (fractions are truncated). For example,

h(3) =

2
4 1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1

3
5 : (4)

If a bit block contains zero errors, or if all of the bits
within the block are in error (as can be veri�ed by sym-
metry), Sd = f0gm. If a block contains exactly one or
two errors, or if all but exactly one or two bits of the
block are in error, Sd 6= f0gm. We can state this equiv-
alently as P (Sa 6= Sb) = 1, for the number of bit errors
ni 2 f1; 2; Nh�2; Nh�1g where P (Sa 6=Sb) is the proba-
bility that Sa 6=Sb and ni is the number of errors. More-
over, if a block contains exactly one bit error, Sd repre-
sents an m-bit binary number that indicates the bit-error

position within the block. Unfortunately, the value of Sd
does not indicate the location of multiple bit errors.
If there are more than two errors, and less than Nh�2

errors within a bit block, Sd is evenly distributed among
the 2m possible syndromes. Of particular interest is the
probability that Sa = Sb � P (Sa = Sb) = 1=2m for
ni 2 f3; 4; : : : ; Nh � 4; Nh � 3g.
In conclusion, note that more errors are introduced

than are corrected, on average, for the cases which have
ni 2 f2; 3; : : : ; Nh=2g.

B. Addition of Parity

Ideally, we would like to correct all errors in each bit
block, introduce no additional bit errors, and reveal a
minimal amount of information on the key bits to an
eavesdropper through public communication.
The Hamming protocol outlined in the previous sec-

tion has a number of shortcomings regarding this ideal.
First, the di�erence syndrome Sd does not distinguish
between single- and multiple-bit errors. Therefore, addi-
tional errors may be introduced if instances of Sd 6= f0gm
are treated as due to single errors. Second, up to m bits
of information are exchanged for each data block; infor-
mation which can be compromised by eavesdropping.
One solution is to eliminate all bits within data blocks

for which Sd 6= f0gm. This certainly removes the pos-
sibility of introducing additional bit errors into the key,
but, unfortunately, the e�ciency of such a method is low
as every block loses eitherm-bits to privacy maintenance,
or all bits because Sd 6= f0gm. The e�ciency of this ap-
proach is not optimal as most of the discarded bits/blocks
for which Sd 6= f0gm are probably not in error.
Another, much better solution is to introduce a pre-

liminary parity comparison on a block of N = 2m bits
and to make a comparison of the syndromes Sa and Sb
conditional upon the result of the parity comparison.�

If the block parities do not agree an odd number of
errors exists in the block. Moreover, if the bit errors

�Hamming discusses the addition of a parity check on the
Nh = 2m � 1 bit block [9] (pp. 47-48; pp. 213-214). His con-
clusion is thatA andB are more likely to introduce additional
errors than correct errors by changing a bit if Sd 6= f0gm and
the block-parities agree. In this situation A and B could ei-
ther remove the m+ 1 bits required to ensure privacy on the
remaining bits (which may remove errors), or they could elim-
inate all of the bits in question, as ni 2 f2; 4; : : : ; 2m�2g > 1.
The expanded protocol described in this e�ort allows the
detection of an even or odd number of errors and prevents
a correction attempt on those data blocks with even num-
bers of errors. This is important since the Hamming algo-
rithm will increase the number of errors in blocks which have
ni 2 f2; 3; : : : ; Nh=2g.



are distributed randomly throughout the data, and if the
number of errors is su�ciently small, then an odd num-
ber of errors in a block probably indicates a single error
which can be corrected by application of the Hamming
algorithm. Therefore, in these instances, one bit is dis-
carded for privacy maintenance and the Hamming algo-
rithm is applied to the remaining Nh bits as previously
discussed, and then dlog 2(Nh)e additional bits are dis-
carded to complete the privacy maintenance.
If the block parities agree, the syndromes are not cal-

culated and compared, but one bit is still discarded from
the block for privacy maintenance. We refer to this error
reconciliation protocol as Winnow.

Winnow reveals no more than log2(N) + 1 bits in 2
classical communications if the parities on the N bits do
not agree: m bits for the syndrome and 1 bit for parity,
whereas only 1 bit of information is revealed in 1 classical
communication if the parities agree.y

Therefore, the amount of key data discarded is

Nodd
dis: = log2(N) + 1 = m+ 1 (5)

bits for blocks with odd numbers of errors such that the
fraction of the bits remaining after privacy maintenance
is

�oddpm = 1� Nodd
dis:

N
(6)

for blocks with odd numbers of errors. For N 2
f8; 16; 32; 64; 128g, �oddpm 2 f0:5; 0:69; 0:88; 0:89; 0:94g, re-
spectively. Also,

�evenpm = 1� 1

N
, (7)

and �evenpm 2 f0:88; 0:94; 0:97; 0:98; 0:99g for the same val-
ues of N . In either case, the appropriate overhead for
the classical communications is also removed immedi-
ately from the data so that the privacy of the bits is
at least maintained if not improved.

III. REMOVING AND CORRECTING ERRORS

All single bit errors in a block are guaranteed to be
either eliminated or corrected after a single pass of Win-

now (a Winnowing). What remains to be considered is
how blocks with multiple errors are a�ected.

yExchanging the parity on N = 2m bits instead of Nh =
2m � 1 bits results in slightly higher e�ciency. That is: more
information is revealed when the syndrome information is
combined with the parity information on a Nh bit blocks than
is revealed when the parity and syndrome are revealed on N
bits in Winnow.

De�ne the change in number of errors in a given block
and for a given initial number of errors as �n = nf �ni,
where ni and nf � nf (ni; N) are the initial and �nal
numbers of bit errors in a block prior to and after Win-

nowing, respectively. The average change in the number
of errors, for a given number of initial errors, after aWin-

nowing (this step includes elimination of the parity bit
but not the �nal m-bits required for completion of the
privacy maintenance step) can be expressed as

��n � 

�n(ni)

�
=

1X
�n=�2

�n�p(�njni), (8)

where

1X
�n=�2

p(�njni) = 1, (9)

and p(�njni) is the probability that the number of errors
will change by �n 2 f�2;�1; 0; 1g given an initial condi-
tion of ni errors in an N�bit data block. The p(�njni)
of interest can be written more instructively as

p(+1jni)=�(n)��Sd 6=0(ni)��(+)(ni)

p(�0jni)=�(n)��Sd=0(ni)+�
(y) ��Sd 6=0(�ni)��(+)(�ni)

p(�1jni)=�(n)��Sd 6=0(ni)��(�)(ni) + �(y) ��Sd=0(�ni)

p(�2jni)=�(y)��Sd 6=0(�ni)��(�)(�ni), (10)

where, ni is as previously de�ned, �ni � ni � 1, �(y_n)

depends only on the initial number of errors (ni) in
the N -bit block and is the probability the bit discarded
for privacy maintenance following the parity check was
(y), or (_) was not (n) in error; �Sd=0(n

_
i �ni) and

�Sd 6=0(n
_
i �ni) are the probabilities that Sa = Sb or

Sa 6=Sb for ni or �ni errors in Nh bits, and �
(�)(n_i �ni) is

the probability that the number of errors (n_i �ni) in the
Nh bits changes by �n = �1 following the prescription
of the Hamming hash for instances in which Sa 6=Sb.
Eq. 8 can be expressed in terms of f�(y_n);�Sd ;�

(�)g
as

��n � 

�n(n)(ni)

�
+


�n(y)(ni)

�
(11)

= ��n
(n)

+ ��n
(y)
,

where the arguements which depend on ni have been su-
pressed, and

��n
(n)
= �(n)��Sd 6=0(ni)�

h
1�2��(�)(ni)

i
,

��n
(y)
= �(y) ��Sd 6=0(�ni)�

h
1�2��(�)(�ni)

i
� �(y). (12)

From the f�Sd ;�
(�)g shown in Table I and the equal-

ities from Eq. 13, the f�(y_n);�Sd ;�
(�)g of interest for

Winnow can be calculated:



�(y) =
ni
N

�(y) + �(n) = 1

�Sd 6=0(n
_
i �ni) + �Sd=0(n

_
i �ni) = 1

�(�)(n_i �ni) + �(+)(n_i �ni) = 1. (13)

In Table II we introduce a new quantity

�nf � hnf i = ni + ��n, (14)

and in Table III we de�ne a new parameter

pf =
�nf
Nf

. (15)

The parameter pf de�nes the probability for each bit in a
given block to be in error. The number Nf 2 fN�1; N�
m � 1g and its value depends on the action required by
Winnow for a given number of initial errors. For example,
Nf = N � 1 or N � m � 1 for pf and ni even or odd,
respectively.
These two tables show the e�ect of Winnow on data

which are divided into 8-bit blocks. The values marked
with superscript p re
ect the e�ect of discarding one bit
following the parity comparison. The values marked with
superscript ph refer to the data after the Hamming algo-
rithm is also applied, but before the requisite log2(N) = 3
bits of data are discarded for privacy maintenance. The
�nal values denoted by subscript f reveal the e�ect of
Winnow (including the e�ect of all discarded data re-
quired for privacy maintenance).
The parameter pf clearly shows a reduction in errors

for ni = 1 and an increase in errors for ni = 3. It also
shows that discarding data to maintain privacy of the
remaining key has no e�ect on the error probability.

A. Probability for Residual Errors

The fraction of key remaining after a Winnowing is
given by

�N � hNf i
N

=

PN

ni=0
Nf P (nijN)

N
, (16)

and the probability for any key bit to be in error following
a Winnowing is

pN =
h�nf i
hNf i =

PN

ni=0
�nf (ni)�P (nijN)

N ��N , (17)

where P (nijN) is the probability for an N -bit block to
contain ni errors before a Winnowing.

1. Random Distribution of Errors

Obviously, the e�ciency with which Winnow removes
errors depends upon the distribution of errors within the
data. Without intimate knowledge of a speci�c QKD
apparatus, a reasonable assumption is that the errors are
random and normally distributed throughout the data.
Given this assumption, P (nijN) in Eq. 17 is given by
the binomial distribution

P (ni j N; p0) =
�
N

ni

�
p0

ni(1� p0)
N�ni (18)

where p0 is the probability that any given bit is in (rela-
tive) error.
With this assumption, Eqs. 16 and 17 can be expressed

as

�N =
N � 1�m

P
nodd
i

�
N
ni

�
p0

ni(1� p0)
N�ni

N
, (19)

where m = log2(N), and

pN =

PN

ni=0
�nf (ni)

�
N
ni

�
p0

ni(1� p0)
N�ni

N ��N . (20)

IV. ANALYSIS

The e�ciency with whichWinnow reduces errors in the
key is of great interest. Two related issues which concern
the e�ciency are: 1) the number of iterations of Winnow

necessary to achieve a su�ciently low probability of error
in the remaining key data, and 2) the amount of key data
that is discarded through privacy maintenance.
The number of iterations is of concern because each it-

eration reveals information and consumes time with each
communication between A and B. Moreover, each com-
munication requires the use of some private key for sig-
nature authentication [7]. Most importantly, though, is
that each iteration requires a signi�cant amount of data
to be discarded through privacy maintenance.
Smaller N require more data to be discarded than

larger N as can be seen from Eq. 19. However, an ef-
fect which tends to mollify this undesirable condition is
that smaller N are more e�cient at removing errors for
larger values of initial error probability. This e�ect is
illustrated in Fig. 1 where we have plotted pN=p0 for
several values of N . For all values of N and p0 su�-
ciently small, pN=p0 < 1 and the protocol can remove
errors from the key data. However, as p0 increases from
p0 = 0, each of the curves passes through pN=p0 = 1 in-
dicating that additional errors are being introduced into
the key. Moreover, the value of p0 for which pN=p0 = 1
is smaller for larger N and the curves do not intersect
between p0 = 0 and pN=p0 = 1.



A. The Iterated Application

As a primary requirement of Winnowing real data in
an iterative application, a random shu�ing of the data
between iterations is essential to randomly redistribute
missed or introduced errors. Without this random shu�e
multliple errors remain clumped together and, in essence,
are impossible to completely remove from the data. Un-
der this constraint it is obvious that the �nal error prob-
ability, and the amount of data remaining after a number
of Winnowings, depends on the way in which N is varied
throughout the successive Winnowings. An intuitive re-
sult which we have veri�ed empirically is that less data
are discarded for the same initial and �nal error probabil-
ities if N is chosen well for the �rst iteration and is either
held constant or increased for all subsequent iterations;
there is no advantage to decreasing N in subsequent it-
erations if Winnow is applied as outlined here.
De�ne

p(p0; fjNg) (21)

and

�(p0; fjNg) (22)

as the �nal error rate and fraction of data remaining
after a sequence fjNg = fj8; j16; j32; j64; j128g where
jN iterations of Winnow are applied with a block size
N 2 f8; 16; 32; 64; 128g beginning with N = 8 and in-
creasing monotonically in N by factors of 2.
In this work N is constrained such that N � 128 only

for the sake of brevity. We have found that this con-
straint does not impose a serious limit on the ability of
Winnow to correct errors. The ideas discussed below can
be extended to include N > 128 in a straightforward
manner.
Because p8 < p0 8 p0 < 0:5, it may appear that errors

can be corrected in the data for this entire range of initial
error probability. However, there is another criterion that
must be met which signi�cantly reduces the maximum
correctable error probability: There must remain a �nite
amount of error-free data after the potential information
possessed by E is reduced through privacy ampli�cation.

B. Eavesdroppers and the BB84 scheme

The maximum amount of potential information pos-
sessed by E can be determined by the initial error proba-
bility p0 and depends on the QKD protocol and the type
of attacks being employed. For example, if the BB84 pro-
tocol is used and E employs a complete intercept/resend
attack on the quantum channel in the same bases used
by B, she will introduce an error probability of p0 = 1=4.
She will also potentially know 1=2 of the data before error

reconciliation and up to 2=3 of the data which remains
after error reconciliation.
If E uses a more clever intercept/resend strategy of

detecting and resending in the Breidbart basis (second
paper in [4]), she would introduce the same number of
errors (p0 = 1=4) and could know up to a fraction of
0:59 of the data before error reconciliation and 0:78 of
the data remaining after error reconciliation.
It should also be noted that certain states of light are

more susceptible to attack than others. For example,
consider weak coherent states which are commonly used
in QKD systems. If E also employs a beamsplitter attack
[3,4,12] to one of these systems, an additional amount
of data is compromised which is not greater than the
mean number of photons in the state. However, this value
can be made arbitrarily small so it is neglected in the
following calculations. Moreover, other states of light
can be used in QKD schemes which are not vulnerable
to this type of attack [13].
Thus, the fraction of data remaining after error recon-

ciliation and privacy ampli�cations can be

�bb84 = �� (0:59)4 p0 (23)

for BB84, where � describes the remaining fraction of
key.

C. Reconcilable Errors

From the above considerations, p and � can be inves-
tigated as a function of p0. Of particular interest is the
maximum p0 for which some secure data remains while
achieving a su�ciently low �nal error probability to make
the data useful. We have chosen, somewhat arbitrarily,
p � 10�6 as a reasonable target for the �nal error prob-
ability.
With this target and the remaining fraction of private

data described by Eq. 23, we �nd the largest initial error
probability for which some private data remains is

p0 = 0:135, (24)

after Winnowing and privacy ampli�cation.
To achieve p <� 10�6 from this large initial error

probability, Winnow must be applied in the sequence
fjNg = f3; 0; 1; 2; 2g. That is, 3 Winnowings with N = 8
must be followed by 1 Winnowing with N = 32, etc. If
this prescription is followed,

�bb84 = 0:002 (25)

of the original data remain and are secure following pri-
vacy ampli�cation.
Some QKD schemes require a larger estimate of E's

knowledge. If Eq. 23 is replaced with [4]

� = �� 2
p
2 p0, (26)



we �nd

p0 = 0:123 (27)

for fjNg = f2; 1; 1; 1; 4g. This leaves a fraction � = 0:005
of the original data as secure data with a single-bit error
probability � 10�6.
Finally, if we estimate that E knows every bit of data

by causing p0 = 1=4, then

� = �� 4 p0. (28)

We then �nd that the largest reconcilable p0 is

p0 = 0:104 (29)

for fjNg = f2; 0; 2; 0; 4g and � = 0:004.
The most e�cient iteration sequence (fjNg) for any

QKD scheme can be determined by �rst applying Win-

now with N = 8 to estimate p0. Once the number of
blocks with odd and even (even includes zero) errors,
Modd

e and Meven
e respectively, are known, the fraction

# of Parity Errors

# of Blocks
=

P
nodd
i

�
N
ni

�
p0

ni(1� p0)
N�ni

N
(30)

can be used to estimate p0. Knowledge of p0 is su�cient
to determine the fjNg which maximizes �.
For small p0, the most e�cient fjNg may start with

N > 8. However, currently working systems which have
been reported in the literature have large enough error
probabilities so that the most key is left if N = 8 for at
least the �rst iteration.

V. COMPARISON WITH CASCADE

A detailed analysis of the advantages of Winnow over
other protocols is beyond the scope of this work. How-
ever, it is instructive to note the advantages over at least
the best-known protocol CASCADE.
The most notable di�erence between Winnow and

CASCADE is that CASCADE does not employ privacy
maintenance. The disadvantage of such a protocol is that
super-redundant information must be exchanged with
each successive iteration. This is to be compared with
CASCADE's predecessor and Winnow which reduce the
size of the data set with each communication. With
the reasonable requirement that a bit revealed through
these communications requires at least a bit to be elimi-
nated through some channel, either before or during pri-
vacy ampli�cation, then the ine�ciency of CASCADE
becomes obvious: retaining and repetitively exchanging
information on the same bits is an additional expense to
the protocol.
For the purpose of comparison, we have computed the

maximum p0 which CASCADE can successfully recon-
cile errors and preserve a small amount of secure data

after privacy ampli�cation and the removal of the super-
redundant information. We �nd

p0 = 0:114 (31)

for fjNg = f2; 1; 0; 2; 1g and �bb84 = 0:01 when (0:59)4 p0
describes the additional amount of key that must be dis-
carded through privacy ampli�cation. This is to be com-
pared with p0 = 0:135 for the same considerations with
Winnow. Obviously Winnow can claim an advantage
over CASCADE just on these grounds.
However, this comparison (or any of the previousWin-

now discussion) does not take into account bits used
to authenticate messages sent between A and B. CAS-
CADE requires signi�cantly more two-way communica-
tion than Winnow, and each packet of n bits sent may
require dlog2 ne for authentication [7]. We calculate
that the most e�cient application of CASCADE requires
1 + log2N communications per iteration while Winnow

requires only 2 communications for any block size N that
exhibits a parity error. CASCADE can be made some-
what more e�cient by including privacy maintenance,
but the additional communication required imposes a
tight limitation on its practical e�ciency. In addition,
because CASCADE does not maintain privacy, subse-
quent iterations requires more bits to be exchanged in the
initial parity phase with each iteration. The additional
bit exchanges require additional signature authentication
bits.
In the spirit of full disclosure we unequivicolly state

that because CASCADE and its predecessor always re-
moves a single error and never introduces additional er-
rors to multiple error blocks, both CASCADE and its
predecessor perform in�nitesimally better than Winnow

in an environment where signature authentication is not
required and privacy maintenance is removed from the
Winnow protocol. However, this miniscule e�ciency
improvement in non-authenticated and non privacy en-
hanced data does not o�set the time lost by CASCADE
and its predecessor due to the many additional commu-
nications, i.e. Winnow's 2 communications is a great
advantage where time is of the essence with regard to
production of such a precious commodity as private, se-
cure key bits over ine�cient noisy quantum channels.
Consider that while CASCADE and its predecesor are
still negotiating to reconcile key that Winnow is building
more key. When signature authentication is factored in
with the additional communications Winnow's superior-
ity cannot be denied.

VI. DISCUSSION

We have empirically veri�ed that Winnow distills
error-error free key bits at a much faster rate than CAS-
CADE or its predecessor on a functional QKD system



[14]. The empirical results verify that CASCADE's pre-
decessor is in�nitesimally more e�cient, but much slower
at distilling error free key. Regarding CASCADE, it has
also been empirically veri�ed that Winnow and CAS-
CADE's predecessor are much more e�cient with higher
error rates. The mathematics formalized herein support
the empirical results.

VII. CONCLUSION

We have identi�ed a new, fast, e�cient, error recon-
ciliation protocol for quantum key distribution which re-
quires only 2 communications between the two parties
attempting to generate private key material.
This new protocol (Winnow) incorporates a prelimi-

nary parity comparison on blocks whose size is N = 2m

where m 2 f3; 4; 5; 6; :::g. Subsequently, one bit is dis-
carded from these blocks to maintain the privacy of the
remaining bits. A Hamming hash function, which can be
used to correct single errors, is applied to the remaining
N�1 bits on the blocks whose parities did not agree. Fi-
nally, m bits are discarded from the blocks on which the
Hamming algorithm was applied to maintain the privacy
of those bits.
We �nd this protocol capable of correcting an initial er-

ror probability of up to 13:5% in privacy ampli�ed BB84-
like quantum key distribution schemes, which is to be
compared with CASCADE which can correct error rates
up to 11:4% in similar systems.
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FIG. 1. The ratio pN=p0 for N = 8, 16 and 32. These
curves illustrate the change in the probability that a given
bit is in error after a single application of Winnow for the
indicated block size N . Note that p8 < p16 8 p0 < 0:5.
Also note that p16 < p32 8 p0 < 0:17. This indicates that
applications of Winnow with smaller N are more e�cient at
removing errors than are applications with larger N .

TABLE I. Summary of probabilities f�(y_n);�Sd ;�
(�)g.

ni=block 1 3 . . . N � 3 N � 1

�Sd 6=0(ni) 1 1� 1
N

1� 1
N

1 0
�Sd 6=0(�ni) 0 1 1� 1

N
1� 1

N
1

�(�)(ni) 1 3
N�1

ni
N�1

N�3
N�1

1y

�(�)(�ni) 0 2
N�1

ni�1
N�1

N�4
N�1

0

y This case (and �(+)(0)) is special as all (or no) bits are
in error. The Hamming code prevents us from making a bit
change that would decrease (increase) the number of errors in
this instance.

TABLE II. �nf for N = 8 for various stages in Winnow

(note that Winnow is not applied to blocks that contain an
even number of errors).

ni 0 1 2 3 4 5 6 7 8

�npf 0 0.88 1.75 2.63 3.5 4.38 5.25 6.13 7

�nphf 0 0 1.75 2.86 3.5 4.14 5.25 7 7

�nf 0 0 1 1.64 2 2.36 3 4 4

TABLE III. �nf=Nf for N = 8 for various stages inWinnow

(note that the Hamming component ofWinnow is not applied
to blocks that contain an even number of errors).

pi 0 0.13 0.25 0.38 0.5 0.63 0.75 0.88 1

ppf 0 0.13 0.25 0.38 0.5 0.63 0.75 0.88 1

pphf 0 0 0.25 0.41 0.5 0.59 0.75 1 1

pf 0 0 0.25 0.41 0.5 0.59 0.75 1 1
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